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Irregular Magneto-Optical Waveguides

ALEXANDER BENTSIONOVICH MANENKOV

.4 bstract— The theory of wave propagation along irregolar anisotropic

guides (fibers) is discussed in brief. The problem in question is considered

by spectral expansion, which is constructed, in tom, with the help of the

scattering operator of conicaf waves. The general relations are illustrated

by example of a round gyrotropic waveguide of a smafl cross section.

I. INTRODUCTION

A NISOTROPIC dielectric waveguides (fibers) have

found wide use in optical systems (for example, in

integrated optics [l]). The following paper analyzes propa-

gation of surface modes in such structures.

II. S-OPERATOR

First consider an open regular waveguide (Fig. 1). For

large r medium parameters are assumed to coincide with

free-space parameters: t= co, p= PO. As has been shown in

an earlier publication [2] for open waveguides with iso-

tropic media, far from the guide axis (Fig. 1) the eigen-

modes are made up (in general) of two conical waves:

convergent and divergent. For r+ co the fields of these

waves are expressed in terms of Hertz functions: 1
~~a)(rp)e *i’r/~ and o~~)(rp)e *i’r/~ (~ is a transverse

wavenumber). We can set unambiguous correspondence

between these conical waves and two column matrices

which are connected, in turn, with a scattering S-operator

[2]

(1)

In this formula convergent conical waves are indicated as

the index (–) and divergent ones are indicated by the

superscript (+). Amplitude functions of divergent waves

corresponding to eigenmodes satisfy the operator equation

(2)

where FJ ~) is an eigenvalue of the inverse operator ~ – 1

[2], m is a discrete index. Thus the eigenmodes are defined

as the waves corresponding to the eige~mat~ces (2). The

fields of these waves are indicated as E~N, E~p, etc. The

eigenmode spectrum consists of continuous and discrete
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]We shall omit the wavefactor exp [ z( hz —tit )] (h is the propagation
constant, h2 =k2 –K2, k=u-).

Fig. 1. Cross section of a waveguide in cylindrical coordinate (r, q, z )
system.

parts. For the modes of continuous spectrum the parameter

~ assumes all real positive values [2].

Such a construction of eigenmodes can be applied for

waveguides (fibers) with anisotropic (gyrotropic) media,

the perrnittivity and permeability of which are tensors t

and ~. The fields of continuous spectrum eigenmodes in

such structures obey the following equations:

V ~ Xl?-iq.l17=ih17XZ,

and satisfy the generalized radiation condition for r+ co

which result from (2). The subscript 1 indicates transverse

parts of vectors and operators; 2X, ZY, and .?Z are unite

coordinate vectors (Fig. 1). In accordance with (2),(4) the

solutions of (3) far from the guide axis have the form

where Jn, Hi’) are cylindrical functions. Note, that the

condition (4) can’t be replaced by the inequalities IE 1,IH I

<constant, since in that case the definition of continuous

spectrum eigenmodes becomes incomplete (these modes

will have a denumerable degeneration). The modes of

discrete spectrum are defined from the equation

Ng-,‘mp
‘O, rm(Kmp)=(), ImK~P >(),vmp

p=l,2, . . . . (6)
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These modes are ordinary surface waves [4].

If the medium is not magnetic (fi-pO) the equations (3)

can be converted into integral form [10]

17(F)= F(0)(F)++e-2kz(vv+k2)eihz

“J j@(~) f&)(K~) dx’dy’ (7)
~= ~on~t

7=(x, y), 7’=(x’, y’)

where E(o) is a superposition of free-space eigenmodes

fields. The expression for E(o) is obtained from (5) by

eliminating all the terms with Hankel functions. The rela-

tion (7) is equivalent t: aAre~resentation of the scattering

operator in the form S= 1+ T,, where ~ is the unit opera-

tor. If the norm of the operator ~~ is small, then the

eigenmodes are constructed with the help of (7) by an

iteration method (Born approximation).

By means of the S-operator we can show that the system

of eigenmodes defined above is orthogonal (see the full

proof in [2], [10]):

=D$1)(K)8m,8(K–K’)

= –D#(K)8m/. (8)

In the formulas (8) by the underline tilde signs we indicate

the eigenmodes fields of the waveguide with transposition

values of tensors ~ and j. In these expressions the super-

scripts (1) refer to the forward modes and the superscripts

(2) refer to the backward ones. The orthogonality of waves

with different discrete indexes m, 1 follows from symmetri-

cal property of the S-operator [2], [3]. The normalizing

fiICtOr D:)(K) is expressed in terms of asymptotic values of

the cigenmodes fields. With the help of the orthogonal

relations (8) the problems of open guides excitation by

external sources may be solved [2], [10]. Note, that by

means of the S-operator the problem of waveguide excita-

tion may be considered as the diffraction p~obleq of a

superposition of the “primary” conical waves E (~), I@) by

the dielectric cylinder [10] ( ~t~), I@’) are the fields excited
in the free space).

The relations presented above apply to the open trans-

mission lines of an arbitrary structure. Now we assume the

waveguide under consideration has the circular cross sec-

tion. We also suppose that its radius a and permittivity

tensclr satisfy the following condition (~ = MO):

where ~ is unit tensor and max I~ I is the absolute maxi-

mum magnitude of the tensor elements. Outside the fiber

the fields are sou~t in terms of a superposition of conical

waves (5). For the condition ka <1 the fields inside the

dielectric (r<a) maybe obtained in quasistatic approxima-

tion or in terms of power series of x and y [10]. If ka - 1,

but max I~ I<1, then the fields may be calculated by the

method of successive approximations. Matching the fields

for r= a * O (Fig. 1) by conventional techniques and taking

into account the condition at infinity (4) we can get a

system of linear equations for the unknown coefficients

{1?., B;} of the expansion (5). Setting as usual the determi-

nant of this system equal to zero, we obtain the equation

defining the eigenvalues rm(K). By solving this equation

and the system then we can define the structure of the

eigenmodes [10]. All the calculations become simpler when

taking into account the symmetrical properties of the S-

operator and the orthogonality of the functions

u~.( CP),vJ9). Note that the tec~ique of calculations
used here has much in common with the technique applied

in a scattering problem of quantum mechanics [5].

The eigenmodes can be also computed by (7) if P= VO.

When the z axis coincides with a principal axis of the

permittivity tensor ? then in the first approximation this

equation has the following form [10]:

g=ly-
yEKa ‘

y~=l.781 0... dS: =dx’dy’,

(lo)

significant since the parameter ICIn (10) the second term is

can take an exponentionally small value and &u 2>1. It

follows that in general case for ka< 1 the fields of eigen-

modes do not coincide wit! the static fields in the vicinity

of the z axis. Assuming E ‘0) = O in (10) and taking into

account the conditions (6) the modes of discrete spectrum

can be calculated [1 1].

Let us consider the eigenmodes in a circular lossless

gyrotropic fiber with a radius a; for r<a its permittivity

tensor t is assumed to have the form (p ape )

cxx = CYY
=fl. co

where c,, ~, and C3 are real positive constants. Other tensor

components are equal to zero. Performing the calculations

described above [10] for the forward symmetrical modes of

the continuous spectrum E$) we get the following expres-

sions for the fields:

[ 1ro(K)=Z13Xp ~(KU)2(63–1) , for r<a (12a)

[
Ez ‘K2~o yo(icr)+ ~(Ka)2(~~ –l)H~l)(fw) 1
Hz =0, for r>a. (12b)
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For the magnetic modes lij~) we get

& = #&B@k,z’, X7), for r<a (13a)
1

Hz ~K2~&$(Kr), J?, ‘o, ro(K)=i, for r>a.

(13b)

The fields of the nonsymmetrical modes HE(Y 1) are equal

to

(14a)

iKB*(k* +h*)(zxtizy)
gl =

h(~l~~– l)(ka)21n(K/Kf~l))

hl(K/K[:’))

r,(K)= for r<a
21n(–fc/K[:’)) ‘

‘2 [ (*+l)H’’)(K4E== YB1e*’P 2.11(Kr)–

HZ=~~E 29 r>a

2i

[

C3+1 (l=/.?+l
Kffl)a~— exp ~ —

yE 1(ka)2(c1Z~-1) “
(14b)

The subscript indexes (+1) and (– 1) refer to the forward

modes with the right and left polarizations, respectively. In

the formulas (14) Kff ’) and K[;’) are the transverse wave-

numbers of the surface modes HE[~ 1) and HE~; ‘); they

are roots of the equations rl(fc) = O. Other modes are

calculated in a similar way, For example, the fields of the

‘+1) are equal tomodes HE2F

EY=tiiEX, for r<a (15a)

Ez=fC2~2~2(Kr)e*2zw

HZ. +’E
2> for r>> a (15b)

where cef = c, + ~ are “effective” perrnittivit y values.

III. IRREGULAR WAVEGUIDES

With the help of the mode systems constructed above the

problem of surface mode transformation in irregular fibers

may be considered. To solve the problem in question in

each cross section of iriegular line the fields are expressed

in terms of the local eigenmodes of continuous and discrete

spectrum [2] which correspond to the local waveguide

structure [6]–[8]

[
22

a=l,2 m,p
p’?(.)%w+

(16)

By substituting the expansion (16) in Maxwell’s equations

we obtain [6] the infinite system of the coupled mode

equations for the amplitudes of the local eigenmodes

C(”)(z) and CfJ(z). For instance, the equations for the

a~plitudes of forward radiation modes (O< K < k ) have the

following form (in the first approximation):

dC~~
— –ihKCj~ =SctfJ~~l(z)Cf}) + . . .

dz

SCtj;~\l(Z)=@[( hI, -hK)Djl)(K)]

(17)

1

where Cf~)( z ) is an amplitude of ‘the incident surface mode

(HE[J 1, or HEf; l)). These equations describe the mode

coupling, including the coupling of surface and radiation

modes. According to the type of guide imperfections the

coupling coefficients Sct~&~~, can be converted to a form

which is more convenient for calculations [6], [7]. For small

discontinuities or slowly changing irregularities the system

(17) may be solved by the method of successive approxima-

tions [6]–[9] (first assuming IC~\) I E 1, Cf~) = Cf~ = O). Then

substituting the computed amplitudes in expansion (16)

and using the method of stationary phase we can estimate

the far fields and the power losses [2], [6], [10]. It should be

noted that far from the guide axis the fields have the form

of a spherical wave; over area r-a the fields are a super-

position of surface modes and space waves [ 10]. The ampli-

tudes of the latter decrease as

exp(iklzl)

lz\(lnlzl)2’ ‘orz+&m

(see the details in [10]).

Let us apply the method described above to the problem

of surface mode propagation in an irregular magneto-

optical fiber. We assume that this guide is circular and its

parameters satisfy the relations (9) and (1 1). The equations

(17) are solved in the same way as in the papers [6], [9]

dealing with a waveguide with an isotropic dielectric.

Therefore we omit the intermediate calculations and give

here only the final results. An incident surface mode HE\~ 1,

(or HEf: ‘)) is assumed to propagate from z = – m to the

irregular fiber section. In what follows the upper signs

correspond to the case, when the incident wave has right

circular polarization, and the lower signs refer to the case,

when the wave has left circular polarization.

First consider the fiber with a small step of the diameter.

For small values of polar angle 0 (tan O=z\r) the radia-

tion pattern of scattering spherical wave has the following

form:

j(0)=fa[(~2+8f,)2(m2+4(1nl@/8,,\)2)]-’,

(~. is a constant). By integrating the function (19) we
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Fig. 2. Radiation losses as a function of dimensionless frequency
ka~ for a step in guide diameter (ce~=(, TP).

obtairI theexpression fortherelative power losses [9], [10]

4

[

C,=p+l

111

2Aa2
y,ad = –

3 (ka)2(~, z~–1) “ T -
(20)

Fig. 2 presents the power radiaticm losses y,,~ as a function

of dimensionless frequency ka(~ for two values of

effective permittivity Cef. The curves are constructed for

Cef=’l.O1 (line 1) and for~ef =2.25 (line 2). For simplicity

when computing the curves in Fig. 2 we assume that

C3=Cef. As seen from (20) for c1 —/3= 1 the mode I@: 1,

with right circular polarization is unstable in a guide with a

chan@ng diameter. It follows that optical fibers with such

parameters have only one stable polarization of propagat-

ing modes (the left polarization). For these irregularities

the reflection coefficient of surface modes is exponention-

ally small [6].

For an axis offset in the plane (x, z) at a value Ax and

for a corner with a small angle a the relative power losses

are equal, respectively, to

(1Ax 1<a, IYll < 1). Fig. 3 shows the radiation loss coeffi-

cient versus the dimensionless frequency for the corner

(cS = Cef). In this case for 0<1 the power pattern ~(0) has

the form

f(o)=’fa~’(o’+ o;l)-’

ill, =lKf;’)/kl

~a = constant. (22)

This function is presented in Fig. 4.

The given results can be generalized for slowly changing

transitions of the fiber. In this case the radiation losses

substantially depend on analytic properties of irregularity

geometry; for smooth transitions the power losses are

expcmentionally small in magnitude. For example, if the

-b

la

K
+=9

d

/0’

/02

2

/0
f

L&-_
g4 06 0! 10 1.?

ka ~

Fig. 3. Radiation losses for a small corner for Cef= 1.01 (curve 1) and
for cef = 2.25 (curve 2).

‘0
q,

Fig. 4. The power scattering pattern for a waveguide comer ( ~m= is a
maximum of the function).

fiber axis is bent along the line

‘tis=(1+$//’)

then for d<h?,,2 and klt$~l >1 the relative power losses are

equal to

yra, =~(kd)20~1exp(-kltY~, ). (23)

Note that for the irregularities caused by diameter change

the radiation modes HEIK and EHIK are excited [6], [9]; in

other cases considered above the modes Eo., HOK, H152.,

and EH2K are excited.

The description of the mode transformation is not unique.

For some types of irregularities the ideal mode expansion

‘This inequality is equivalent to

d
—x <<8,,dz W,
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and perturbation method are particularly well suited for

calculations [2]. Using such a technique for a small gap in

the waveguide, the radiation losses are [9]

where Al is a length of the gap.

IV. CONCLUSION

We have calculated the mode transformation in an irreg-

ular gyrotropic fiber. In a similar way the surface mode

propagation can be calculated for a waveguide, whose

permittivity tensor is real and diagonal [10]. Under the

condition (9) the formulas for the radiation losses have a

similar form to the ones given above. Note that in general

case this fiber has no pure symmetrical modes.

The considered above method of the S-operator can be

applied in solving quite a number of problems [10]. The

calculations may be simplified if we take into account

characteristic properties of the fiber. In particular, when

the permittivity tensor t of the guide is real, the S-operator

is unitary. It follows that the radiation losses, which are

caused by the excitation of different modes (with different

discrete indexes), are added independently. Also, in this

case the mode orthogonality conditions (8) may be sim-

plified by using complex conjugate functions. Unitary con-

ditions on the S-operator impose specified restrictions on

the Fourier coefficients of the field expansions (5) at

infinity. For example, in a waveguide with arbitrary form

of a cross section, the permittivity tensor of which is real

and diagonal, for the radiation modes HE,. the coefficients

of the expansion (5) satisfy the relations: hB~ = ~ ac ~B,,

BH=B~=O, n>l, for k+O.

The properties of the S-operator used here have much in

common with the properties of the S-matrix applied in

quantum mechanics [5], [12], but there exist many dif-

ferences. In particular, analytic properties of the S-operator

are more complicated than those of the matrix, since in the

complex plane of the parameter K the functions u~fi, o~.

necessarily have the branch points (for h= O).
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