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Irregular Magneto-Optical Waveguides

ALEXANDER BENTSIONOVICH MANENKOV

Abstract— The theory of wave propagation along irregular anisotropic
guides (fibers) is discussed in brief. The problem in question is considered
by spectral expansion, which is constructed, in turn, with the help of the
scattering operator of conical waves. The general relations are illustrated
by example of a round gyrotropic waveguide of a small cross section.

I. INTRODUCTION

NISOTROPIC dielectric waveguides (fibers) have

found wide use in optical systems (for example, in
integrated optics [1]). The following paper analyzes propa-
gation of surface modes in such structures.

II. S-OPERATOR

First consider an open regular waveguide (Fig. 1). For
large » medium parameters are assumed to coincide with
free-space parameters: e=¢,, p=p,. As has been shown in
an earlier publication [2] for open waveguides with iso-
tropic media, far from the guide axis (Fig. 1) the eigen-
modes are made up (in general) of two conical waves:
convergent and divergent. For r— oo the fields of these
waves are expressed in terms of Hertz functions:!
uS N (@)e ™™ /yr and ol N@)e ™ /Jr (k is a transverse
wavenumber). We can set unambiguous correspondence
between these conical waves and two column matrices
which are connected, in turn, with a scattering S-operator

2]
s[5 [wn
ol oH |
In this formula convergent conical waves are indicated as
the index (—) and divergent ones are indicated by the

superscript (+). Amplitude functions of divergent waves
corresponding to eigenmodes satisfy the operator equation

5 — umrc _ umx
(e

where T, (k) is an eigenvalue of the inverse operator S ~!
[2], m is a discrete index. Thus the eigenmodes are defined
as the waves corresponding to the eigenmatrices (2). The
fields of these waves are indicated as E,,, E,,,, etc. The
eigenmode spectrum consists of continuous and discrete
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'We shall omit the wavefactor exp[t(hz—w?)] (k is the propagation
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Fig. 1. Cross section of a waveguide in cyhindrical coordinate (7, @, z)

system.

parts. For the modes of continuous spectrum the parameter
k assumes all real positive values [2].

Such a construction of eigenmodes can be applied for
waveguides (fibers) with anisotropic (gyrotropic) media,
the permittivity and permeability of which are tensors ¢
and fi. The fields of continuous spectrum eigenmodes in
such structures obey the following equations:

vV | XE—iopH=ihEXE,

V . XH+iweE=ihH X8,

(3)
and satisfy the generalized radiation condition for r— oo

La_F'__ ___ —2ikr — EZ
P gi=r, (o) F- L8 o2, F—(Hz) (4)

which result from (2). The subscript L indicates transverse
parts of vectors and operators; €, €,, and ¢, are unite
coordinate vectors (Fig. 1). In accordance with (2),(4) the
solutions of (3) far from the guide axis have the form

E,\ k2 ** [B,
()% 2, )

n= 00

2n+1

-[2Jn(xr)+(II,MT)——I)H,SD(N)]E""’ (5)

where J,, H{" are cylindrical functions. Note, that the
condition (4) can’t be replaced by the inequalities | E|,| H |
< constant, since in that case the definition of continuous
spectrum eigenmodes becomes incomplete (these modes
will have a denumerable degeneration). The modes of
discrete spectrum are defined from the equation

S—l(u"'”)zo r,(x,,)=0 Imk,, >0
v b m\®mp ’ mp ’

mp

(6)

p:l’z’.. .
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These modes are ordinary surface waves [4].

If the medium is not magnetic (4=p,) the equations (3)
can be converted into integral form [10]
E(F ‘.—E<°>(**)+

J

—thz(v v +k2)eihz

[ XEF)HP(xe)dx'dy (7)

z=const
=(x",y")

x=e(r) /e, —1

where E@ is a superposition of free-space eigenmodes
fields. The expression for E@ is obtained from (5) by
eliminating all the terms with Hankel functions. The rela-
tion (7) is equivalent to a representation of the scattering
operator in the form $=17+ Ts, where [ is the unit opera-
tor. If the norm of the operator 7, is small, then the
eigenmodes are constructed with the help of (7) by an
iteration method (Born approximation).

By means of the S-operator we can show that the system
of eigenmodes defined above is orthogonal (see the full
proof in [2], [10]):

=(x,y),

p=|r=r,

[ (EQXHD—EPxHY)E, dx dy

zZ=const
=D3(x)8,,8(x—+’)
2
47rwt:2h1‘m(‘l<)-/(; €Du$iu(2) _Muvr(y},)co(?) de

=—DP(x)8,,. (8)
In the formulas (8) by the underline tilde signs we indicate
the eigenmodes fields of the waveguide with transposition
values of tensors é and fi. In these expressions the super-
scripts (1) refer to the forward modes and the superscripts
(2) refer to the backward ones. The orthogonality of waves
with different discrete indexes m, [ follows from symmetri-
cal property of the S-operator [2], [3]. The normalizing
factor D{P(x) is expressed in terms of asymptotic values of
the eigenmodes fields. With the help of the orthogonal
relations (8) the problems of open guides excitation by
external sources may be solved [2], [10]. Note, that by
mearns of the S-operator the problem of waveguide excita-
tion may be considered as the diffraction problem of a
superposition of the “primary” conical waves E 5(2), HP by
the dielectric cylinder [10] (E?, HP are the flelds excited
in the free space).

The relations presented above apply to the open trans-
mission lines of an arbitrary structure. Now we assume the
waveguide under consideration has the circular cross sec-
tion. We also suppose that its radius a and permittivity
tenscr satisfy the following condition (f=pg,):

kaymax|% ()| <2.4, &x=é&/¢,—1 9)

where 1 is unit tensor and max|%| is the absolute maxi-
mum magnitude of the tensor elements. Qutside the fiber
the fields are sought in terms of a superposition of conical
waves (5). For the condition ka<1 the fields inside the
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dielectric (r<<a) may be obtained in quasistatic approxima-
tion or in terms of power series of x and y [10]. If ka~1,
but max|¥|<1, then the fields may be calculated by the
method of successive approximations. Matching the fields
for r=a=0 (Fig. 1) by conventional techniques and taking
into account the condition at infinity (4) we can get a
system of linear equations for the unknown coefficients
{B,, B} of the expansion (5). Setting as usual the determi-
nant of this system equal to zero, we obtain the equation
defining the eigenvalues I, (k). By solving this equation
and the system then we can define the structure of the
eigenmodes [10]. All the calculations become simpler when
taking into account the symmetrical properties of the S-
operator and the orthogonality of the functions
U, {P), U, (®@). Note that the technique of calculations
used here has much in common with the technique applied
in a scattering problem of quantum mechanics [5].

The eigenmodes can be also computed by (7) if A=u,.
When the z axis coincides with a principal axis of the
permittivity tensor € then in the first approximation this
equation has the following form [10]:

E(F)=EO(F)+¢[ %, E(7)as.

z=const

£ E(F)v < dSl,

z= const

Yg=1781---, dS'| =dx'dy’,

(10)

In (10) the second term is significant since the parameter «
can take an exponentionally small value and £a*>1. It
follows that in general case for ka<1 the fields of eigen-
modes do not coincide with the static fields in the vicinity
of the z axis. Assuming E©@ =0 in (10) and taking into
account the conditions (6) the modes of discrete spectrum
can be calculated [11].

Let us consider the eigenmodes in a circular lossless
gyrotropic fiber with a radius a; for r<<a its permittivity
tensor € is assumed to have the form (g=p,)

€xx :ny :fl'fv
€, = €, =if¢€,
€, —€37€, (11)

where ¢, 8, and ¢, are real positive constants. Other tensor
components are equal to zero. Performing the calculations
described above [10] for the forward symmetrical modes of
the continuous spectrum ESY) we get the following expres-
sions for the fields:

- hey

E, ==2«k2B,F,

—,2
Zie, E,=k*B,

I’O(K)Ziexp[zzi(xa)z(q—l) , forr<a (12a)
E,=«x BO[JO(Kr)-l- (ka)*(e;—1)H{O(kr)
(12b)

H,=0, forr>a.
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For the magnetic modes H§) we get

Elzg—igszé(iB?—eIsz7), forr<a  (13a)
1
H,=k’B}Jy(xr), E,=0, T,(k)=i, forr>a.
(13b)

The fields of the nonsymmetrical modes HE{"" are equal
to

. ikB(K*+h*)(E, xie,)
T h(e,7B—1)(ka)’In (x/k(V)
In(x/k{FP
I(x)= (/e ) forr<a (14a)

iln(—n/icﬁl)) ’

2 .

K 5 e S L )]
E, =75 Be [2J1(xr) (I‘I(K) +1 )H1 (xr)]
H=+2vF >

=

z h z r a

LY 2—2—1-6 Gl €;+B+1 . (14b)
Ve 8 (ka)(e,78-1)

The subscript indexes (+ 1) and (—1) refer to the forward
modes with the right and left polarizations, respectively. In
the formulas (14) x{; " and «{;' are the transverse wave-
numbers of the surface modes HE{'V and HE{V; they
are roots of the equations I')(¥)=0. Other modes are
calculated in a similar way. For example, the fields of the
modes HE{*" are equal to

iKz Bzr 2 2 +i
o . + *ip
Sy eef+1(k h*)e
E,==xiE, forr<a (15a)
E,=«’B,J,(kr)e=>?
we
H, == h”Ez, for r>a (15b)

where €., —=¢; T B are “effective” permittivity values.

IIL.

With the help of the mode systems constructed above the
problem of surface mode transformation in irregular fibers
may be considered. To solve the problem in question in
each cross section of irfegular line the fields are expressed
in terms of the local eigenmodes of continuous and discrete
spectrum [2] which correspond to the local waveguide
structure [6]—[8]

- [>2] —
3 By + 3 [ A

a=12]m,p
(16)

By substituting the expansion (16) in Maxwell’s equations
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we obtain [6] the infinite system of the coupled mode
equations for the amplitudes of the local eigenmodes
Ci(z) and C{2(z). For instance, the equations for the
amplitudes of forward radiation modes (0<x<k) have the
following form (in the first approximation):

dc®
S Q=S+ (1)

Sct,(,},;})“(z):w[(hn —-hn)Drg)(K)]”l

- 0€ -
[ ER(GE0) axay (19)
Z=Ccons

where C{P(z) is an amplitude of the incident surface mode
(HE{Y or HE{{'V). These equations describe the mode
coupling, including the coupling of surface and radiation
modes. According to the type of guide imperfections the
coupling coefficients Scz{;"}; can be converted to a form
which is more convenient for calculations [6], {7]. For small
discontinuities or slowly changing irregularities the system
(17) may be solved by the method of successive approxima-
tions [6]-[9] (first assuming |C{P|~1, C@ =C'? =0). Then
substituting the computed amplitudes in expansion (16)
and using the method of stationary phase we can estimate
the far fields and the power losses [2], {6], [10]. It should be
noted that far from the guide axis the fields have the form
of a spherical wave; over area r~a the fields are a super-
position of surface modes and space waves [10]. The ampli-
tudes of the latter decrease as

exp (ik|z|)
2] (In|z])*’

(see the details in [10]).

Let us apply the method described above to the problem
of surface mode propagation in an irregular magneto-
optical fiber. We assume that this guide is circular and its
parameters satisfy the relations (9) and (11). The equations
(17) are solved in the same way as in the papers [6], [9]
dealing with a waveguide with an isotropic dielectric.
Therefore we omit the intermediate calculations and give
here only the final results. An incident surface mode HE{ P
(or HE{[ V) is assumed to propagate from z= — oo to the
irregular fiber section. In what follows the upper signs
correspond to the case, when the incident wave has right
circular polarization, and the lower signs refer to the case,
when the wave has left circular polarization.

First consider the fiber with a small step of the diameter.
For small values of polar angle ¢ (tan %=z /r) the radia-
tion pattern of scattering spherical wave has the following
form:

F@)=£] (92 +9% V(w2 +4(n|9/9,,]))] ",

K(:l)
| (19

(f, is a constant). By integrating the function (19) we

forz-*= o

4=
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Fig. 2. Radiation losses as a function of dimensionless frequency
kayfe.c —1 for a step in guide diameter (€. =¢; 7 B).

obtain the expression for the relative power losses [9], [10]

::4_ ¢FB+1 2.
T 73| (ka) (e, 7 B—1)

Fig. 2 presents the power radiation losses v,,4 as a function
of dimensionless frequency kaye,—1 for two values of
effective permittivity €., The curves are constructed for
€. = 1.01 (line 1) and for e, =2.25 (line 2). For simplicity
when computing the curves in Fig. 2 we assume that
€; =€, As seen from (20) for ¢, —B=1 the mode HE{}"
with right circular polarization is unstable in a guide with a
changing diameter. It follows that optical fibers with such
parareters have only one stable polarization of propagat-
ing modes (the left polarization). For these irregularities
the reflection coefficient of surface modes is exponention-
ally small [6].

For an axis offset in the plane (x, z) at a value Ax and
for a corner with a small angle « the relative power losses
are equal, respectively, to

2

Aa

a

(20)

€I:B_"102 g (corner):l _a_

ey R B

(|Ax|<a, #;;<1). Fig. 3 shows the radiation loss coeffi-
cient versus the dimensionless frequency for the corner
(e3=¢,,). In this case for #<1 the power pattern f(#) has
the form

Ax

X @)

(offset) —
rad

f(8)=£,8(92+9%) "

— =1
1(}u“|"§1 )/kl
f, =constant.

(22)
This function is presented in Fig. 4.

The given results can be generalized for slowly changing
transitions of the fiber. In this case the radiation losses
substantially depend on analytic properties of irregularity
geometry; for smooth transitions the power losses are
exponentionally small in magnitude. For example, if the
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Radiation losses for a small corner for €, =1.01 (curve 1) and
for e, =2.25 (curve 2).

2

Fig. 3.

o
fre ¢

1 1 i

af

sl

a0/}

NI

‘#ﬂ

Fig. 4. The power scattering pattern for a waveguide corner ( fy,, is a
maximum of the function).

fiber axis is bent along the line
o =4
" (1+241%)
then for d</9,,* and kl9%,>1 the relative power losses are
equal to

2
w
Yeaa = 35 (kd )’ 0% exp (— k19, (23)

Note that for the irregularities caused by diameter change
the radiation modes HE,, and EH,, are excited {6}, [9]; in
other cases considered above the modes E,,, H,,, HE,,,
and EH,, are excited.

The description of the mode transformation is not unique.
For some types of irregularities the ideal mode expansion

2This inequality is equivalent to

<Ly

‘—d_z—xaxis
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and perturbation method are particularly well suited for
calculations [2]. Using such a technique for a small gap in
the waveguide, the radiation losses are [9]

8 i DAl

Yrad = 3 (Gef+1)2 s

where Al is a length of the gap.

Al<a

(24)

IV. CoNCLUSION

We have calculated the mode transformation in an irreg-
ular gyrotropic fiber. In a similar way the surface mode
propagation can be calculated for a waveguide, whose
permittivity tensor is real and diagonal [10]. Under the
condition (9) the formulas for the radiation losses have a
similar form to the ones given above. Note that in general
case this fiber has no pure symmetrical modes.

The considered above method of the S-operator can be
applied in solving quite a number of problems [10]. The
calculations may be simplified if we take into account
characteristic properties of the fiber. In particular, when
the permittivity tensor € of the guide is real, the S-operator
is unitary. It follows that the radiation losses, which are
caused by the excitation of different modes (with different
discrete indexes), are added independently. Also, in this
case the mode orthogonality conditions (8) may be sim-
plified by using complex conjugate functions. Unitary con-
ditions on the S-operator impose specified restrictions on
the Fourier coefficients of the field expansions (5) at
infinity. For example, in a waveguide with arbitrary form
of a cross section, the permittivity tensor of which is real
and diagonal, for the radiation modes HE,, the coefficients
of the expansion (5) satisfy the relations: hB] = *we, B,
B,=B,=0, n>1, for k—=0.

The properties of the S-operator used here have much in
common with the properties of the S-matrix applied in
quantum mechanics [5], [12], but there exist many dif-
ferences. In particular, analytic properties of the S-operator
are more complicated than those of the matrix, since in the
complex plane of the parameter x the functions u,,,, v,,,
necessarily have the branch points (for #=0).
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